ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что середины сторон любого четырёхугольника являются вершинами параллелограмма.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 993]      



Задача 53489

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие — на катетах. Найдите стороны прямоугольника, если известно, что они относятся как 5:2, а гипотенуза треугольника равна 45.

Прислать комментарий     Решение


Задача 53553

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Определите вид четырёхугольника, вершинами которого служат середины сторон данного: 1) произвольного четырёхугольника; 2) параллелограмма; 3) прямоугольника, 4) ромба; 5) квадрата; 6) трапеции.

Прислать комментарий     Решение


Задача 54709

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Стороны параллелограмма равны 2 и 4, а угол между ними равен 60o. Через вершину этого угла проведены прямые, проходящие через середины двух других сторон параллелограмма. Найдите косинус угла между этими прямыми.

Прислать комментарий     Решение


Задача 53475

 [Теорема Вариньона]
Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Докажите, что середины сторон любого четырёхугольника являются вершинами параллелограмма.

Прислать комментарий     Решение


Задача 53483

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .