ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямой расположены точки A, B, C и D, причём  AB = BC = CD.  Отрезки AB, BC и CD служат диаметрами окружностей. Из точки A к окружности с диаметром CD проведена касательная l. Найдите отношение хорд, высекаемых на прямой l окружностями с диаметрами AB и BC.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1024]      



Задача 53113

Темы:   [ Общая касательная к двум окружностям ]
[ Площадь четырехугольника ]
[ Вспомогательные подобные треугольники ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

Две окружности, радиусы которых равны R и r, расположены одна вне другой. Отрезки общих внутренних касательных AC и BD (A, B, C, D – точки касания) равны a. Найдите площадь четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 53249

Темы:   [ Касающиеся окружности ]
[ Площади криволинейных фигур ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Две окружности разных радиусов касаются в точке C одной прямой и расположены по одну сторону от неё. Отрезок CD – диаметр большей окружности. Из точки D проведены две прямые, касающиеся меньшей окружности в точках A и B. Прямая, проходящая через точки C и A, образует с общей касательной к окружностям в точке C угол 75° и пересекает большую окружность в точке M. Известно, что  AM = .  Найдите площадь фигуры, ограниченной отрезками касательных DA, DB и дугой ACB меньшей окружности.

Прислать комментарий     Решение

Задача 53579

Темы:   [ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Диагонали трапеции с основаниями AD и BC пересекаются в точке O.
Докажите, что окружности, описанные около треугольников AOD и BOC касаются друг друга.

Прислать комментарий     Решение

Задача 53687

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла, равного α  (α < 90°),  с вершиной в точке O взяты точки A и B, причём  OA = a,  OB = b.
Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.

Прислать комментарий     Решение

Задача 53699

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На прямой расположены точки A, B, C и D, причём  AB = BC = CD.  Отрезки AB, BC и CD служат диаметрами окружностей. Из точки A к окружности с диаметром CD проведена касательная l. Найдите отношение хорд, высекаемых на прямой l окружностями с диаметрами AB и BC.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .