ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

Вниз   Решение


Диагонали вписанного четырёхугольника $ABCD$ пересекаются в точке $P$. Биссектриса угла $ABD$ пересекает диагональ $AC$ в точке $E$, а биссектриса угла $ACD$ – диагональ $BD$ в точке $F$. Докажите, что прямые $AF$ и $DE$ пересекаются на медиане треугольника $APD$.

ВверхВниз   Решение


Докажите, что четыре точки пересечения окружностей, построенных на сторонах вписанного четырёхугольника как на хордах, и отличные от вершин этого четырёхугольника, лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 499]      



Задача 52389

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Микеля ]
Сложность: 4
Классы: 8,9

Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Прислать комментарий     Решение


Задача 52912

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В окружность вписан четырёхугольник MNPQ, диагонали которого взаимно перпендикулярны и пересекаются в точке F. Прямая, проходящая через точку F и середину стороны MN, пересекает сторону PQ в точке H. Докажите, что FH — высота треугольника PFQ и найдите её длину, если MN = 4, MQ = 7 и $ \angle$MPQ = $ \alpha$.

Прислать комментарий     Решение


Задача 53709

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 8,9

Докажите, что четыре точки пересечения окружностей, построенных на сторонах вписанного четырёхугольника как на хордах, и отличные от вершин этого четырёхугольника, лежат на одной окружности.

Прислать комментарий     Решение


Задача 54822

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

В окружности пересекающиеся хорды AB и CD перпендикулярны, AD = m, BC = n. Найдите диаметр окружности.

Прислать комментарий     Решение


Задача 54824

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Четырёхугольник KLMN вписан в окружность радиуса R, LM = n, диагонали KM и LN перпендикулярны. Найдите KN.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .