ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Илья Муромец встречает трёхголового Змея Горыныча. Каждую минуту Илья отрубает одну голову Змею. Пусть x – живучесть Змея  (x > 0).  Вероятность ps того, что на месте отрубленной головы вырастет s новых голов  (s = 0, 1, 2),  равна    В течение первых 10 минут сражения Илья записывал, сколько голов вырастало на месте каждой срубленной. Получился следующий вектор:  K = (1, 2, 2, 1, 0, 2, 1, 0, 1, 2).  Найдите такое значение живучести Змея, при котором вероятность вектора K наибольшая.

Вниз   Решение


Докажите, что сумма расстояний от любой точки внутри равностороннего треугольника до его сторон не зависит от положения точки.

ВверхВниз   Решение


Ковбой Билл зашёл в бар и попросил у бармена бутылку виски за 3 доллара и шесть коробков непромокаемых спичек, цену которых он не знал. Бармен потребовал с него 11 долларов 80 центов (1 доллар = 100 центов), и в ответ на это Билл вытащил револьвер. Тогда бармен пересчитал стоимость покупки и исправил ошибку. Как Билл догадался, что бармен пытался его обсчитать?

ВверхВниз   Решение


Автор: Тыщук К.

Дано натуральное число  n > 3.  Назовём набор из n точек на координатной плоскости допустимым, если их абсциссы различны, и каждая из этих точек окрашена либо в красный, либо в синий цвет. Будем говорить, что многочлен P(x) разделяет допустимый набор точек, если либо выше графика P(x) нет красных точек, а ниже – нет синих, либо наоборот (на самом графике могут лежать точки обоих цветов). При каком наименьшем k любой допустимый набор из n точек можно разделить многочленом степени не более k?

ВверхВниз   Решение


В треугольник со сторонами 10, 17 и 21 вписан прямоугольник с периметром 24 так, что одна его сторона лежит на большей стороне треугольника.
Найдите стороны прямоугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



Задача 116105

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Расстояние между параллельными прямыми равно 24. На одной из них лежит точка C , на другой — точки A и B , причём треугольник ABC — равнобедренный и остроугольный, а его боковая сторона равна 25. Найдите радиус окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 116298

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Стороны AB и AC треугольника равны соответственно a и b . На медиане, проведённой к стороне BC взята точка M . Сумма расстояний от этой точки до прямых AB и AC равна c . Найдите эти расстояния.
Прислать комментарий     Решение


Задача 35015

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма расстояний от любой точки внутри равностороннего треугольника до его сторон не зависит от положения точки.
Прислать комментарий     Решение


Задача 52788

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами a и b и углом между ними $ \alpha$ вписана полуокружность, диаметр которой лежит на третьей стороне. Найдите радиус полуокружности.

Прислать комментарий     Решение


Задача 53792

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольник со сторонами 10, 17 и 21 вписан прямоугольник с периметром 24 так, что одна его сторона лежит на большей стороне треугольника.
Найдите стороны прямоугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 172]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .