ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD сторона AB равна $ {\frac{103}{10}}$, сторона AD равна 14, сторона CD равна 10. Известно, что угол DAB острый, причём синус угла DAB равен $ {\frac{3}{5}}$, косинус угла ADC равен - $ {\frac{3}{5}}$. Окружность с центром в точке O касается сторон AD, AB, BC. Найдите BO.

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 404]      



Задача 54423

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4+
Классы: 8,9

В выпуклом четырёхугольнике ABCD сторона AB равна $ {\frac{5}{8}}$, сторона BC равна 19$ {\frac{33}{40}}$, сторона AD равна 12$ {\frac{4}{5}}$. Известно, что угол DAB острый, синус угла DAB равен $ {\frac{3}{5}}$, косинус угла ABC равен - $ {\frac{63}{65}}$. Окружность с центром в точке O касается сторон BC, CD и AD. Найдите OD.

Прислать комментарий     Решение


Задача 54424

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4+
Классы: 8,9

В выпуклом четырёхугольнике ABCD сторона AD равна 7, сторона DC равна 5, сторона BC равна 5$ {\frac{19}{20}}$. Известно, что угол BAD острый, угол ABC тупой, причём синус угла BAD равен $ {\frac{3}{5}}$, косинус угла ADC равен - $ {\frac{3}{5}}$. Найдите радиус окружности, касающейся сторон AB, BC и AD.

Прислать комментарий     Решение


Задача 54425

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4+
Классы: 8,9

В выпуклом четырёхугольнике ABCD сторона AB равна $ {\frac{103}{10}}$, сторона AD равна 14, сторона CD равна 10. Известно, что угол DAB острый, причём синус угла DAB равен $ {\frac{3}{5}}$, косинус угла ADC равен - $ {\frac{3}{5}}$. Окружность с центром в точке O касается сторон AD, AB, BC. Найдите BO.

Прислать комментарий     Решение


Задача 55432

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9

Две окружности с центрами O1 и O2, лежащими на стороне MN треугольника MPN, касаются друг друга и пересекают стороны MP и PN в точках M, D, и N, C соответственно, причём MO1 = O1D = 3 и NO2 = CO2 = 6. Найдите площадь треугольника MNP, если известно, что отношение площади треугольника MCO2 к площади треугольника O1DN равно 8$ \sqrt{2-\sqrt{3}}$.

Прислать комментарий     Решение


Задача 116403

Темы:   [ Шестиугольники ]
[ Площадь треугольника (через высоту и основание) ]
[ Перегруппировка площадей ]
Сложность: 4+
Классы: 10,11

Автор: Белухов Н.

Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .