ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите объём правильной шестиугольной пирамиды с боковым ребром b и плоским углом ϕ при вершине. ![]() ![]() Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1. ![]() ![]() ![]() Дано дерево с n вершинами, n ≥ 2. В его вершинах расставлены числа x1, x2, xn, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через S сумму чисел на всех рёбрах. Докажите, что ![]() ![]() ![]() С помощью циркуля и линейки разделите данный параллелограмм на четыре равновеликих части прямыми, выходящими из одной вершины.
![]() ![]() |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 993]
В квадрате ABCD точка M — середина BC, а O — точка пересечения DM и AC. Найдите угол MOC.
В параллелограмме ABCD угол BAD равен 60o, а сторона AB равна 3. Биссектриса угла A пересекает сторону BC в точке E. Найдите площадь треугольника ABE.
С помощью циркуля и линейки разделите данный параллелограмм на четыре равновеликих части прямыми, выходящими из одной вершины.
Через каждую вершину выпуклого четырёхугольника проведены прямые, параллельные диагонали, не проходящей через эту вершину. Докажите, что площадь полученного таким образом параллелограмма вдвое больше площади данного четырёхугольника.
Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 993] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |