ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 993]      



Задача 35090

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 9,10

Внутри квадрата ABCD взята точка M. Доказать, что точки пересечения медиан треугольников ABM, BCM, CDM, DAM образуют квадрат. Чему равна сторона этого квадрата, если сторона исходного квадрата равна 1?
Прислать комментарий     Решение


Задача 53490

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Перпендикуляр, опущенный из вершины прямоугольника на его диагональ, делит её в отношении 1:3. Найдите диагональ, если известно, что точка её пересечения с другой диагональю удалена от большей стороны на расстояние, равное 2.

Прислать комментарий     Решение


Задача 53554

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12.

Прислать комментарий     Решение


Задача 53674

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.

Прислать комментарий     Решение


Задача 54309

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В ромбе ABCD точки M и N — середины сторон BC и CD соответственно. Найдите угол MAN, если $ \angle$BAD = 60o.

Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .