ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Объём правильной четырёхугольной пирамиды равен V , угол между боковым ребром и плоскостью основания равен 30o . Рассматриваются правильные треугольные призмы, вписанные в пирамиду так, что одно из боковых рёбер лежит на диагонали основания пирамиды, одна из боковых граней параллельна основанию пирамиды, и вершины этой грани лежат на боковых гранях пирамиды. Найдите: а) объём той призмы, плоскость боковой грани которой делит высоту пирамиды в отношении 2:3, считая от вершины; б) наибольшее значение объёма рассматриваемых призм. ![]() ![]() Точки K , N , L , M расположены соответственно на сторонах AB , BC , CD и AD выпуклого четырёхугольника ABCD , причём ![]() ![]() |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Из медиан AA1, BB1 и CC1 треугольника ABC составлен треугольник KMN, а из медиан KK1, MM1 и NN1 треугольника KMN — треугольник PQR. Докажите, что третий треугольник подобен первому и найдите коэффициент подобия.
Какую линию описывает середина отрезка между двумя пешеходами, равномерно идущими по прямым дорогам?
На сторонах треугольника ABC во внешнюю сторону построены
подобные между собой треугольники ADB, BEC и CFA
( 1) середины отрезков AC, DC, BC и EF — вершины параллелограмма;
2) у этого параллелограмма два угла равны
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |