ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Поворот (прочее)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости дан угол, равный , с вершиной в точке O. Докажите, что композиция симметрий относительно сторон угла является поворотом вокруг точки O на угол 2. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n вокруг некоторой точки.
Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.
На плоскости дан угол, равный , с вершиной в точке O. Докажите, что композиция симметрий относительно сторон угла является поворотом вокруг точки O на угол 2.
На плоскости даны точки O, M и прямая l, проходящая через точку O. Прямую l повернули вокруг точки O против часовой стрелки на угол , получив прямую l1. Докажите, что точка, симметричная точке M относительно прямой l1, получается из точки, симметричной точке M относительно прямой l, поворотом вокруг точки O против часовой стрелки на угол 2.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|