ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
![]() |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 172]
На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Точка D – середина гипотенузы AB прямоугольного треугольника ABC с катетами 3 и 4.
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение AK : BK равно отношению стороны правильного пятиугольника к его диагонали.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 172] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |