ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. ![]() |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 330]
В треугольнике ABC поведены медианы AA1 и BB1. Докажите, что если ∠CAA1 = ∠CBB1, то AC = BC.
Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.
Основания AD и BC трапеции ABCD равны a и b (a > b).
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
Вокруг равнобедренного треугольника ABC (AB = AC) описана окружность. Касательная к ней в точке В пересекает луч АС в точке D, Е – середина стороны АВ, Н – основание перпендикуляра, опущенного из точки D на прямую АВ. Найдите длину ЕН, если AD = a.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 330] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |