Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 507]
Докажите, что если в выпуклом шестиугольнике
каждый из трех отрезков, соединяющих середины противоположных
сторон, делит площадь пополам, то эти отрезки пересекаются в одной
точке.
Докажите, что в правильном тридцатиугольнике A1...A30 следующие тройки диагоналей:
а) A1A7, A2A9, A4A23;
б) A1A7, A2A15, A4A29;
в) A1A13, A2A15, A10A29
пересекаются в одной точке.
Положительные числа
a1,...,
an таковы,
что
2
ai <
a1 + ... +
an при всех
i = 1,...,
n. Докажите,
что существует вписанный
n-угольник, длины сторон которого
равны
a1,...,
an.
[Теорема Паскаля]
|
|
Сложность: 6 Классы: 8,9,10
|
Докажите, что точки пересечения противоположных сторон
(если эти стороны не параллельны) вписанного шестиугольника лежат на
одной прямой (Паскаль).
Точка
M лежит на описанной окружности
треугольника
ABC;
R — произвольная точка. Прямые
AR,
BR и
CR
пересекают описанную окружность в точках
A1,
B1 и
C1. Докажите,
что точки пересечения прямых
MA1 и
BC,
MB1 и
CA,
MC1
и
AB лежат на одной прямой, проходящей через точку
R.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 507]