ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Найдите трилинейные координаты вершин треугольника Брокара.
б) Найдите трилинейные координаты точки Штейнера (см. задачу 19.55.2).

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 298]      



Задача 57795

Тема:   [ Барицентрические координаты ]
Сложность: 7
Классы: 9,10

Пусть dab и dac — расстояния от вершин B и C до прямой la, касающейся внешним образом окружностей Sb и Sc (и отличной от прямой BC); числа dbc и dba, dcb и dca определяются аналогично. Докажите, что dabdbcdca = dacdbadcb.
Прислать комментарий     Решение


Задача 57796

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Продолжения сторон выпуклого четырехугольника ABCD пересекаются в точках P и Q. Докажите, что точки пересечения биссектрис внешних углов при вершинах A и C, B и D, P и Q лежат на одной прямой.
Прислать комментарий     Решение


Задача 57804

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Докажите, что вписанная окружность касается окружности девяти точек (Фейербах). Найдите трилинейные координаты точки касания.
Прислать комментарий     Решение


Задача 57805

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

а) Найдите трилинейные координаты вершин треугольника Брокара.
б) Найдите трилинейные координаты точки Штейнера (см. задачу 19.55.2).
Прислать комментарий     Решение


Задача 57806

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Пусть (x1, y1, z1) и (x2, y2, z2) — абсолютные трилинейные координаты точек M и N. Докажите, что

MN2 = $\displaystyle {\frac{\cos\alpha}{\sin\beta\sin\gamma}}$(x1 - x2)2 + $\displaystyle {\frac{\cos\beta}{\sin\gamma\sin\alpha}}$(y1 - y2)2 + $\displaystyle {\frac{\cos\gamma}{\sin\alpha\sin\beta}}$(z1 - z2)2.


Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .