ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
>>
Свойства симметрии и центра симметрии
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии. б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M? Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?
Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|