ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 354]      



Задача 60489

Темы:   [ НОД и НОК. Взаимная простота ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
[ Геометрические интерпретации в алгебре ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

a, b, c – целые числа; a и b отличны от нуля.
Докажите, что уравнение  ax + by = c  имеет решения в целых числах тогда и только тогда, когда c делится на  d = НОД(a, b).

Прислать комментарий     Решение

Задача 60525

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
[ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами  (x, y),  лежащие в полосе  0 ≤ x ≤ b – 1.  Каждой такой точке припишем целое число  N(x, y) = ax + by.
  а) Докажите, что для каждого натурального c существует ровно одна точка  (x, y)  (0 ≤ x ≤ b – 1),  для которой  N(x, y) = c.
  б) Теорема Сильвестра. Докажите, что наибольшее c, для которого уравнение  ax + by = c  не имеет решений в целых неотрицательных числах, имеет вид
c = ab – a – b.

Прислать комментарий     Решение

Задача 61348

Темы:   [ Системы линейных уравнений ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

Исследуйте системы уравнений:

а)

б)

в)

г)

д)

е)

Прислать комментарий     Решение

Задача 97763

Темы:   [ Площадь (прочее) ]
[ Конус ]
[ Векторы (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
[ Площадь сферы и ее частей ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4
Классы: 10,11

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

Прислать комментарий     Решение

Задача 108738

Темы:   [ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
[ Средняя линия трапеции ]
[ Уравнение плоскости ]
Сложность: 4
Классы: 9,10,11

Маленький Петя подпилил все ножки у квадратной табуретки и четыре отпиленных кусочка потерял. Оказалось, что длины всех кусочков различны, и что табуретка после этого стоит на полу, пусть наклонно, но по-прежнему касаясь пола всеми четырьмя концами ножек. Дедушка решил починить табуретку, однако нашёл только три кусочка с длинами 8, 9 и 10 см. Какой длины может быть четвёртый кусочек?
Прислать комментарий     Решение


Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .