ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что число  1k + 2k + ... + 12k  делится на 13 для  k = 1, 2, ..., 11.

   Решение

Задачи

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 2440]      



Задача 60709

Темы:   [ Арифметика остатков (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 9,10,11

Докажите, что число  1k + 2k + ... + 12k  делится на 13 для  k = 1, 2, ..., 11.

Прислать комментарий     Решение

Задача 60715

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Решите сравнения:
  а)  8x ≡ 3 (mod 13);
  б)  17x ≡ 2 (mod 37);
  в)  7x ≡ 2 (mod 11);
  г)  80x ≡ 17 (mod 169).

Прислать комментарий     Решение

Задача 60726

 [Гармонические числа]
Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Докажите, что числа  Hn = 1 + 1/2 + 1/3 + ... + 1/n  при  n > 1  не будут целыми.

Прислать комментарий     Решение

Задача 60741

Темы:   [ Малая теорема Ферма ]
[ Индукция (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 9,10,11

С помощью индукции докажите следующее утверждение, эквивалентное малой теореме Ферма: если p – простое число, то для любого натурального a справедливо сравнение  ap ≡ a (mod p).

Прислать комментарий     Решение

Задача 60777

Темы:   [ Функция Эйлера ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 10,11

Докажите равенства:
  а)  φ(m) φ(n) = φ((m, n)) φ([m, n]);
  б)  φ(mn) φ((m, n)) = φ(m) φ(n) (m, n).
Определение функции φ(n) см. в задаче 60758.

Прислать комментарий     Решение

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .