Страница:
<< 137 138 139 140
141 142 143 >> [Всего задач: 2440]
|
|
Сложность: 4- Классы: 9,10,11
|
В равенстве х5 + 2x + 3 = pk числа х и k – натуральные. Может ли число р быть простым?
|
|
Сложность: 4- Классы: 9,10,11
|
Решите в целых числах уравнение (x² – y²)² = 16y + 1.
|
|
Сложность: 4- Классы: 9,10,11
|
Натуральные числа a, x и y, большие 100, таковы, что
y² – 1 = a²(x² – 1). Какое наименьшее значение может принимать дробь a/x?
|
|
Сложность: 4- Классы: 10,11
|
Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ...,
n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют
разную чётность?
|
|
Сложность: 4- Классы: 8,9,10,11
|
У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.
Страница:
<< 137 138 139 140
141 142 143 >> [Всего задач: 2440]