ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 2440]      



Задача 64899

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

В равенстве  х5 + 2x + 3 = pk  числа х и k – натуральные. Может ли число р быть простым?

Прислать комментарий     Решение

Задача 65182

Темы:   [ Уравнения в целых числах ]
[ Формулы сокращенного умножения (прочее) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 9,10,11

Решите в целых числах уравнение  (x² – y²)² = 16y + 1.

Прислать комментарий     Решение

Задача 65237

Темы:   [ Уравнения в целых числах ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Натуральные числа a, x и y, большие 100, таковы, что  y² – 1 = a²(x² – 1). Какое наименьшее значение может принимать дробь a/x?

Прислать комментарий     Решение

Задача 65251

Темы:   [ Четность и нечетность ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 10,11

Пусть  n > 1  – натуральное число. Выпишем дроби  1/n, 2/n, ..., n–1/n  и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через  f(n). При каких натуральных  n > 1  числа  f(n) и  f(2015n) имеют разную чётность?

Прислать комментарий     Решение

Задача 65388

Темы:   [ Деление с остатком ]
[ Теория алгоритмов ]
Сложность: 4-
Классы: 8,9,10,11

У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.

Прислать комментарий     Решение

Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .