ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 367]      



Задача 60806

Темы:   [ Признаки делимости на 3 и 9 ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в записи числа 230 есть по крайней мере две одинаковые цифры, не вычисляя его.

Прислать комментарий     Решение

Задача 60877

Темы:   [ Теорема Эйлера ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Прислать комментарий     Решение

Задача 64363

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Из целых чисел от 0 до 1000 выбрали 101 число.
Докажите, что среди модулей их попарных разностей есть десять различных чисел, не превосходящих 100.

Прислать комментарий     Решение

Задача 64618

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Даны 111 различных натуральных чисел, не превосходящих 500.
Могло ли оказаться, что для каждого из этих чисел его последняя цифра совпадает с последней цифрой суммы всех остальных чисел?

Прислать комментарий     Решение

Задача 64652

Темы:   [ Замощения костями домино и плитками ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .