ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ребро правильного тетраэдра равно a . Плоскость P проходит через вершину B и середины рёбер AC и AD . Шар касается прямых AB , AC , AD и той части плоскости P , которая заключена внутри тетраэдра. Найдите радиус шара. (Найдите все решения). ![]() ![]() Высота конуса равна h , а образующая равна l . Найдите радиус основания и площадь осевого сечения. ![]() ![]() ![]() На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности. ![]() ![]() ![]() Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w. ![]() ![]() |
Страница: << 1 2 3 4 >> [Всего задач: 16]
Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что ABCD – квадрат?
Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.
На вписанной окружности треугольника ABC, касающейся стороны AC в точке S, нашлась такая точка Q, что середины отрезков AQ и QC также лежат на вписанной окружности. Докажите, что QS – биссектриса угла AQC.
Страница: << 1 2 3 4 >> [Всего задач: 16] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |