ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 111299

Темы:   [ Сфера, описанная около тетраэдра ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В шаре радиуса 9 через точку S проведены три равные хорды AA1 , BB1 и CC1 так, что AS = 4 , A1S = 8 , BS < B1S , CS < C1S . Найдите радиус сферы, описанной около пирамиды SABC .
Прислать комментарий     Решение


Задача 110204

Темы:   [ Биссекторная плоскость ]
[ Гомотетия помогает решить задачу ]
[ Симметрия относительно плоскости ]
[ Параллельность прямых и плоскостей ]
Сложность: 4+
Классы: 10,11

В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .
Прислать комментарий     Решение


Задача 87022

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Гомотетия помогает решить задачу ]
[ Объем параллелепипеда ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 10,11

Дан параллелепипед ABCDA1B1C1D1. На лучах C1C, C1B1 и C1D1 отложены отрезки C1M, C1N и C1K, равные соответственно  5/2 CC15/2 C1B1
5/2 C1D1. В каком отношении плоскость, проходящая через точки M, N, K, делит объём параллелепипеда ABCDA1B1C1D1.

Прислать комментарий     Решение

Задача 78488

Темы:   [ Правильный тетраэдр ]
[ Свойства частей, полученных при разрезаниях ]
[ Гомотетия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 4+
Классы: 10,11

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?
Прислать комментарий     Решение


Задача 64483

Темы:   [ Правильный тетраэдр ]
[ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

На каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .