ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться ![]() ![]() На окружности отмечены 2014 точек. В одной из них сидит кузнечик, который делает прыжки по часовой стрелке либо на 57 делений, либо на 10. Известно, что он посетил все отмеченные точки, сделав наименьшее количество прыжков длины 10. Какое? ![]() ![]() |
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 368]
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
Петя выбрал натуральное число a > 1 и выписал на доску пятнадцать чисел 1 + a, 1 + a², 1 + a³, ..., 1 + a15. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?
Докажите, что для любого натурального m существует число Фибоначчи Fn (n ≥ 1), кратное m.
На окружности отмечены 2014 точек. В одной из них сидит кузнечик, который делает прыжки по часовой стрелке либо на 57 делений, либо на 10. Известно, что он посетил все отмеченные точки, сделав наименьшее количество прыжков длины 10. Какое?
У каждого целого числа от n + 1 до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |