Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 204]
Докажите, что если многоугольник таков, что из
некоторой точки
O виден весь его контур, то из любой
точки плоскости полностью видна хотя бы одна его сторона.
Докажите, что сумма внешних углов любого
многоугольника, прилегающих к меньшим
180
o внутренним
углам, не меньше
360
o.
|
|
Сложность: 4 Классы: 10,11
|
На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину (P, Q). Докажите, что
(P, Q) = (Q, P).
|
|
Сложность: 4 Классы: 8,9,10
|
В выпуклом n-угольнике проведено несколько диагоналей. Проведённая диагональ называется хорошей, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.
В некотором выпуклом n-угольнике (n > 3) все расстояния между вершинами различны.
а) Назовём вершину неинтересной, если самая близкая к ней вершина – соседняя с ней. Каково наименьшее возможное количество неинтересных вершин (при данном n)?
б) Назовём вершину необычной, если самая дальняя от неё вершина – соседняя с ней. Каково наибольшее возможное количество необычных вершин (при данном n)?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 204]