ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что  EF || AB.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 122]      



Задача 64923

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ Две пары подобных треугольников ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 10,11

Через ортоцентр остроугольного треугольника проведены две перпендикулярные прямые. Стороны треугольника высекают на каждой из этих прямых два отрезка: один, лежащий внутри треугольника, второй – вне его. Докажите, что произведение двух внутренних отрезков равно произведению двух внешних.

Прислать комментарий     Решение

Задача 53895

Темы:   [ Шестиугольники ]
[ Правильные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно, причём  AM/AC = CN/CE = λ.  Известно, что точки B, M и N лежат на одной прямой. Найдите λ.

Прислать комментарий     Решение

Задача 56456

Темы:   [ Средняя линия трапеции ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

Основания AD и BC трапеции ABCD равны a и b  (a > b).
  а) Найдите длину отрезка, высекаемого диагоналями на средней линии.
  б) Найдите длину отрезка MN, концы которого делят стороны AB и CD в отношении  AM : MB = DN : NC = p : q.

Прислать комментарий     Решение

Задача 64710

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

Прислать комментарий     Решение

Задача 64874

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9,10

Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что  EF || AB.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .