ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что каждая мама с вероятностью ½ голосует за лучший спектакль и с вероятностью ½ – за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.
  б) Тот же вопрос, если в финал вышло больше двух классов.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



Задача 65277

Темы:   [ Дискретное распределение ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9,10,11

А и Б стреляют в тире, но у них есть только один шестизарядный револьвер с одним патроном. Поэтому они договорились по очереди случайным образом крутить барабан и стрелять. Начинает А. Найдите вероятность того, что выстрел произойдёт, когда револьвер будет у А.

Прислать комментарий     Решение

Задача 65297

Темы:   [ Дискретное распределение ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9,10,11

На новогоднюю ёлку повесили 100 лампочек в ряд. Затем лампочки стали переключаться по следующему алгоритму: зажглись все, через секунду погасла каждая вторая лампочка, ещё через секунду каждая третья лампочка переключилась: если горела, то погасла и наоборот. Через секунду каждая четвёртая лампочка переключилась, ещё через секунду – каждая пятая и так далее. Через 100 секунд всё закончилось. Найдите вероятность того, что случайно выбранная после этого лампочка горит (лампочки не перегорают и не бьются).

Прислать комментарий     Решение

Задача 65298

Тема:   [ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10,11

В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что каждая мама с вероятностью ½ голосует за лучший спектакль и с вероятностью ½ – за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.
  б) Тот же вопрос, если в финал вышло больше двух классов.

Прислать комментарий     Решение

Задача 65313

Темы:   [ Дискретное распределение ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10,11

В городе, где живет Рассеянный Ученый, телефонные номера состоят из 7 цифр. Ученый легко запоминает телефонный номер, если этот номер палиндром, то есть он одинаково читается слева направо и справа налево. Например, номер 4435344 Ученый запоминает легко, потому что этот номер палиндром. А номер 3723627 не палиндром, поэтому Ученый такой номер запоминает с трудом. Найдите вероятность того, что телефонный номер нового случайного знакомого Ученый запомнит легко.

Прислать комментарий     Решение

Задача 65315

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
Сложность: 3
Классы: 8,9,10,11

40% приверженцев некоторой политической партии являются женщинами. 70% приверженцев этой партии – городские жители. При этом 60% горожан, поддерживающих партию, – мужчины. Являются ли независимыми события "приверженец партии – горожанин" и "приверженец партии – женщина"?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .