ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Вниз   Решение


Дан куб ABCDA1B1C1D1 с ребром a . а) Докажите, что AA1 и BC – скрещивающиеся прямые; б) постройте их общий перпендикуляр; в) найдите расстояние между этими прямыми.

ВверхВниз   Решение


Два выпуклых многоугольника A1A2...An и B1B2...Bn  (n ≥ 4)  таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?

ВверхВниз   Решение


Дан тетраэдр, у которого периметры всех граней равны между собой. Докажите, что сами грани равны между собой.

ВверхВниз   Решение


Автор: Фольклор

Есть 40 одинаковых шнуров. Если поджечь любой шнур с одной стороны, он сгорает, а если с другой – не горит. Вася раскладывает шнуры в виде квадрата (см. рисунок, каждый шнур – сторона клетки). Затем Петя расставляет 12 запалов. Сможет ли Вася разложить шнуры так, что Пете не удастся сжечь все шнуры?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



Задача 64681

Темы:   [ Целочисленные решетки (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 6,7,8

Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).

Прислать комментарий     Решение

Задача 66543

Темы:   [ Целочисленные решетки (прочее) ]
[ Разрезания (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)
Прислать комментарий     Решение


Задача 103753

Темы:   [ Целочисленные решетки (прочее) ]
[ Обход графов ]
Сложность: 3
Классы: 5,6,7

Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?

Прислать комментарий     Решение

Задача 60869

Темы:   [ Целочисленные решетки (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 8,9,10

Докажите, что на окружности с центром в точке    лежит не более одной точки целочисленной решетки.

Прислать комментарий     Решение

Задача 65450

Темы:   [ Целочисленные решетки (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

Есть 40 одинаковых шнуров. Если поджечь любой шнур с одной стороны, он сгорает, а если с другой – не горит. Вася раскладывает шнуры в виде квадрата (см. рисунок, каждый шнур – сторона клетки). Затем Петя расставляет 12 запалов. Сможет ли Вася разложить шнуры так, что Пете не удастся сжечь все шнуры?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .