ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 222]      



Задача 64840

Темы:   [ Отношение порядка ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

С начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её неожиданной, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными?

Прислать комментарий     Решение

Задача 65462

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

Прислать комментарий     Решение

Задача 65487

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?

Прислать комментарий     Решение

Задача 65761

Темы:   [ Целочисленные и целозначные многочлены ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число. На  2n + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *x2n + *x2n–1 + ... *x + *  так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?

Прислать комментарий     Решение

Задача 73766

Темы:   [ Уравнения в целых числах ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Егорян Р.

Решите в натуральных числах уравнение  nx + ny = nz.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .