ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли такие целые числа p и q, что при любых целых значениях x выражение  x2 + px + q  кратно 3?

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 606]      



Задача 65523

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие целые числа p и q, что при любых целых значениях x выражение  x2 + px + q  кратно 3?

Прислать комментарий     Решение

Задача 65546

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?

Прислать комментарий     Решение

Задача 65550

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

Прислать комментарий     Решение

Задача 66080

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Найдите все такие пары натуральных чисел a и k, что для всякого натурального n, взаимно простого c a, число  akn+1 – 1  делится на n.

Прислать комментарий     Решение

Задача 66744

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Последовательности (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В ряд выписаны несколько натуральных чисел с суммой 2019. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 40. Какое наибольшее количество чисел могло быть выписано?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .