ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если:  а) k = 6;   б) k ≥ 7?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 507]      



Задача 64452

Темы:   [ Вписанные и описанные многоугольники ]
[ Четность и нечетность ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 8,9,10

В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).

Прислать комментарий     Решение

Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 65669

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 4
Классы: 7,8,9

Автор: Обухов Б.

Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Найдите все возможные целые значения n.

Прислать комментарий     Решение

Задача 65690

Темы:   [ Правильные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если:  а) k = 6;   б) k ≥ 7?

Прислать комментарий     Решение

Задача 65875

Темы:   [ Правильные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10

Автор: Тимохин М.

Дан правильный 2n-угольник A1A1...A2n с центром O, причём  n ≥ 5.  Диагонали A2An–1 и A3An пересекаются в точке F, а A1A3 и A2A2n–2 – в точке P.
Докажите, что  PF = PO.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .