ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 288]      



Задача 65687

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Полуинварианты ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.

Прислать комментарий     Решение

Задача 66259

Темы:   [ Вписанные и описанные окружности ]
[ Процессы и операции ]
[ Полуинварианты ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?

Прислать комментарий     Решение

Задача 98070

Темы:   [ Теория алгоритмов (прочее) ]
[ Разложение в произведение транспозиций и циклов ]
[ Полуинварианты ]
Сложность: 4+
Классы: 9,10,11

В колоду сложено n различных карт. Разрешается переложить любое число рядом лежащих карт (не меняя порядок их следования и не переворачивая) в другое место колоды. Требуется несколькими такими операциями переложить все n карт в обратном порядке.
  а) Докажите, что при  n = 9  это можно сделать за 5 операций;
Докажите, что при  n = 52  это
  б) можно сделать за 27 операций;
  в) нельзя сделать за 17 операций;
  г) нельзя сделать за 26 операций.

Прислать комментарий     Решение

Задача 65858

Темы:   [ Правильные многогранники (прочее) ]
[ Четность и нечетность ]
[ Инварианты ]
[ Четность перестановки ]
Сложность: 5-
Классы: 9,10,11

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

Прислать комментарий     Решение

Задача 78681

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
[ Полуинварианты ]
Сложность: 5-
Классы: 8,9,10

Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле (если только оно свободно), соблюдая следующие правила: нельзя увеличивать расстояние между королями (расстоянием между двумя полями называется наименьшее число шагов короля, за которое он может пройти с одного поля на другое: так, в начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто поставит своего короля на противоположную кромку доски (белого короля на вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .