ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла. ![]() |
Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 402]
В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.
Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.
В остроугольном треугольнике ABC проведены медиана AM и высота BH. Перпендикуляр, восстановленный в точке M к прямой AM, пересекает луч HB в точке K. Докажите, что если ∠MAC = 30°, то AK = BC.
|
![]()
|
Решение
|
|
Задача 108148 |
|
![]() |
|
Решение |
В треугольнике ABC: ∠C = 60°, ∠A = 45°. Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.
![]() |
|
Решение |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |