ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 222]      



Задача 65904

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 7,8

Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

Прислать комментарий     Решение

Задача 78189

Темы:   [ Десятичная система счисления ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

Доказать, что в любом шестизначном числе можно переставить цифры так, чтобы сумма первых трёх отличалась от суммы вторых трёх меньше, чем на 10.
Прислать комментарий     Решение


Задача 78269

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 10,11

Доказать, что для любых трёх бесконечных последовательностей натуральных чисел

a1... an ...
b1... bn ...
c1... cn ...

найдутся такие номера p и q, что

ap$\displaystyle \ge$aq, bp$\displaystyle \ge$bq, cp$\displaystyle \ge$cq.

Прислать комментарий     Решение

Задача 78297

Темы:   [ Текстовые задачи (прочее) ]
[ Принцип крайнего (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 10,11

Школьник в течение учебного года должен решать ровно по 25 задач за каждые идущие подряд 7 дней. Время, необходимое на решение одной задачи (любой), не меняется в течение дня, но меняется в течение учебного года по известному школьнику закону и всегда меньше 45 минут. Школьник хочет затратить на решение задач в общей сложности наименьшее время. Доказать, что для этого он может выбрать некоторый день недели и в этот день (каждую неделю) решать по 25 задач.

Прислать комментарий     Решение

Задача 78584

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В каждой клетке квадратной таблицы m×m клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше m. Докажите, что сумма всех чисел в таблице не меньше чем  ½ m².

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .