ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность нулей и единиц строится следующим образом: на k-м месте ставится ноль, если сумма цифр числа k чётна, и единица, если сумма цифр числа k нечётна. Докажите, что эта последовательность непериодична. ![]() |
Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 694]
Могут ли три различных числа вида 2n + 1, где n – натуральное, быть последовательными членами геометрической прогрессии?
Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что a1 = b1, a2 : b2 = 2 и
Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.
Последовательность нулей и единиц строится следующим образом: на k-м месте ставится ноль, если сумма цифр числа k чётна, и единица, если сумма цифр числа k нечётна. Докажите, что эта последовательность непериодична.
Решите уравнение (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².
Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |