ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 157]      



Задача 66264

Темы:   [ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Прямая Симсона ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

Прислать комментарий     Решение

Задача 102372

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

На основаниях AD и BC трапеции ABCD построены квадраты ADEF и BCGH, расположенные вне трапеции. Диагонали трапеции пересекаются в точке O. Найдите длину отрезка AD, если  BC = 2,  GO = 7,  а  GF = 18.

Прислать комментарий     Решение

Задача 102373

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

На основаниях AD и BC трапеции ABCD построены квадраты ADMN и BCRS, расположенные вне трапеции. Диагонали трапеции пересекаются в точке T. Найдите длину отрезка RN, если  AD = 8,  BC = 3,  а  TN = 20.

Прислать комментарий     Решение

Задача 115304

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку пересечения диагоналей трапеции ABCD параллельно основаниям BC и AD, пересекает сторону CD в точке K. Окружность проходит через вершины A и B трапеции, пересекает её основания BC и AD в точках X и Y соответственно и касается её стороны CD в точке K. Докажите, что прямая XY проходит через точку пересечения прямых AB и CD.

Прислать комментарий     Решение

Задача 116965

Темы:   [ Текстовые задачи (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 6,7,8

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .