ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Мухин Д.Г.

На графике функции $y=1/x$ Миша отмечал подряд все точки с абсциссами 1, 2, 3, ..., пока не устал. Потом пришла Маша и закрасила все прямоугольники, одна из вершин которых — это отмеченная точка, еще одна — начало координат, а еще две лежат на осях (на рисунке показано, какой прямоугольник Маша закрасила бы для отмеченной точки $P$). Затем учительница попросила ребят посчитать площадь фигуры, состоящей из всех точек, закрашенных ровно один раз. Сколько получилось?

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 148]      



Задача 52470

Темы:   [ Площадь четырехугольника ]
[ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9,10

Четырехугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O.
Докажите, что ломаная AOC делит его на две равновеликие части.

Прислать комментарий     Решение

Задача 54114

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что сумма расстояний от произвольной точки, лежащей на основании равнобедренного треугольника, до боковых сторон постоянна.

Прислать комментарий     Решение

Задача 56493

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.
Прислать комментарий     Решение


Задача 64901

Темы:   [ Правильный (равносторонний) треугольник ]
[ Отношения площадей подобных фигур ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 9,10,11

Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.

Прислать комментарий     Решение

Задача 66551

Темы:   [ Дроби (прочее) ]
[ Вычисление площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8

Автор: Мухин Д.Г.

На графике функции $y=1/x$ Миша отмечал подряд все точки с абсциссами 1, 2, 3, ..., пока не устал. Потом пришла Маша и закрасила все прямоугольники, одна из вершин которых — это отмеченная точка, еще одна — начало координат, а еще две лежат на осях (на рисунке показано, какой прямоугольник Маша закрасила бы для отмеченной точки $P$). Затем учительница попросила ребят посчитать площадь фигуры, состоящей из всех точек, закрашенных ровно один раз. Сколько получилось?

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .