ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.

   Решение

Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1547]      



Задача 116895

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точка M – середина основания AC остроугольного равнобедренного треугольника ABC. Точка N симметрична M относительно BC. Прямая, параллельная AC и проходящая через точку N, пересекает сторону AB в точке K. Найдите угол AKC.

Прислать комментарий     Решение

Задача 35090

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 9,10

Внутри квадрата ABCD взята точка M. Доказать, что точки пересечения медиан треугольников ABM, BCM, CDM, DAM образуют квадрат. Чему равна сторона этого квадрата, если сторона исходного квадрата равна 1?
Прислать комментарий     Решение


Задача 66977

Темы:   [ Вспомогательные подобные треугольники ]
[ Изогональное сопряжение ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 9,10,11

В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
Прислать комментарий     Решение


Задача 67117

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Прислать комментарий     Решение


Задача 102709

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3
Классы: 8,9

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно а) начала координат; б) точки K(a;b).

Прислать комментарий     Решение


Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .