Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 507]
|
|
Сложность: 5- Классы: 10,11
|
Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же
окружности?
|
|
Сложность: 5 Классы: 10,11
|
Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
|
|
Сложность: 5 Классы: 9,10,11
|
В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°.
Докажите, что ∠PQC = 30°.
|
|
Сложность: 5 Классы: 9,10,11
|
В четырёхугольнике ABCD AB = BC, ∠A = ∠B = 20°, ∠C = 30°. Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 507]