ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 508]      



Задача 115609

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Перегруппировка площадей ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Дан выпуклый шестиугольник, каждая диагональ которого, соединяющая противоположные вершины, делит его площадь пополам.
Докажите, что эти диагонали пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109460

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Подсчет двумя способами ]
[ Правильные многоугольники ]
[ Пятиугольники ]
Сложность: 4
Классы: 7,8,9,10

Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?

Прислать комментарий     Решение

Задача 58168

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Делимость чисел. Общие свойства ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.

Прислать комментарий     Решение

Задача 109748

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
[ Выпуклые многоугольники ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Прислать комментарий     Решение


Задача 109911

Темы:   [ Неравенства с трехгранными углами ]
[ Четырехугольная пирамида ]
[ Тетраэдр (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 10,11

Существуют ли выпуклая n -угольная ( n 4 ) и треугольная пирамиды такие, что четыре трехгранных угла n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Прислать комментарий     Решение


Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .