ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Попов Л. А.

В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 993]      



Задача 67234

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10,11

Автор: Попов Л. А.

В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?
Прислать комментарий     Решение


Задача 76484

Тема:   [ Параллелограммы (прочее) ]
Сложность: 3
Классы: 10,11

На сторонах параллелограмма вне его построены квадраты. Доказать, что их центры лежат в вершинах некоторого квадрата.
Прислать комментарий     Решение


Задача 76512

Темы:   [ Параллелограммы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

Прислать комментарий     Решение

Задача 79485

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.
Прислать комментарий     Решение


Задача 102808

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника ]
Сложность: 3
Классы: 7,8

Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8?
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .