Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 73]
|
|
Сложность: 3 Классы: 8,9,10
|
На квадратном поле 10*10 девять клеток 1*1 поросли бурьяном.
После этого бурьян может распространиться на клетку,
у которой не менее двух соседних клеток уже поросли бурьяном.
Докажите, что тем не менее бурьян не сможет распространиться на
все клетки.
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске записаны несколько чисел. За один ход разрешается любые два из них a и b, одновременно не равные нулю, заменить на числа a – b/2 и b + a/2. Можно ли через несколько таких ходов получить на доске исходные числа?
|
|
Сложность: 4- Классы: 8,9,10
|
В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написаны $1000$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $1000$ последовательных целых чисел.
|
|
Сложность: 4 Классы: 8,9,10
|
По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел a – d и b – c отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 73]