ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 76]
Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?
У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет
Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)?
Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений. а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 76] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|