Страница: 1
2 3 4 5 6 7 >> [Всего задач: 139]
Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.
|
|
Сложность: 2+ Классы: 7,8,9
|
Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $BH$ – высота прямоугольного треугольника $ABC$ $(\angle B=90^{\circ})$. Вневписанная окружность треугольника $ABH$, противолежащая вершине $B$,
касается прямой $AB$ в точке $A_{1}$; аналогично определяется точка $C_{1}$. Докажите, что $AC\parallel A_{1}C_{1}$.
Дан
ABC. Центры вневписанных окружностей
O1,
O2 и
O3
соединены прямыми. Доказать, что
O1O2O3 — остроугольный.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 139]