ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)? Замечание. Считается, что дачные участки расположены в одну линию. Решение |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 316]
На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?
На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?
Из пункта A одновременно вылетают 100 самолетов (флагманский и 99 дополнительных). С полным баком горючего самолет может пролететь 1000 км. В полёте самолеты могут передавать друг другу горючее. Самолет, отдавший горючее другим, совершает планирующую посадку. Каким образом надо совершать перелёт, чтобы флагман пролетел возможно дальше?
Замечание. Считается, что дачные участки расположены в одну линию.
В четырёхугольнике ABCD AB = BC = CD = 1, AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 316] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|