ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 222]      



Задача 79286

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?
Прислать комментарий     Решение


Задача 111808

Темы:   [ Средние величины ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

Прислать комментарий     Решение

Задача 116648

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.

Прислать комментарий     Решение

Задача 116652

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Для натурального a обозначим через P(a) наибольший простой делитель числа  a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что  P(a) = P(b) = P(c).

Прислать комментарий     Решение

Задача 78263

Темы:   [ Рекуррентные соотношения ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 4+
Классы: 8,9,10

Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .