ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1026]      



Задача 66995

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Радиусы окружностей ]
Сложность: 3+
Классы: 8,9,10,11

На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

Прислать комментарий     Решение

Задача 67075

Темы:   [ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

На диагонали $AC$ квадрата $ABCD$ взята точка $P$. Пусть $H$ – точка пересечения высот треугольника $APD$, $M$ – середина $AD$ и $N$ – середина $CD$.
Докажите, что прямые $PN$ и $MH$ взаимно перпендикулярны.

Прислать комментарий     Решение

Задача 67219

Темы:   [ Центральная симметрия (прочее) ]
[ Четность и нечетность ]
[ Топология (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
Прислать комментарий     Решение


Задача 79295

Темы:   [ Свойства симметрий и осей симметрии ]
[ Обратный ход ]
Сложность: 3+
Классы: 10,11

Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Задача 102310

Темы:   [ Поворот ]
[ Вспомогательные подобные треугольники ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Точка Q расположена на стороне MN треугольника LMN так, что  NQ : QM = 1 : 2.  При повороте этого треугольника на некоторый угол вокруг точки Q вершина L переходит в вершину N, а вершина M – в точку P, лежащую на продолжении стороны LM за точку L. Найдите углы треугольника LMN.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .