Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]
Найти все положительные решения системы уравнений
Известно, что квадратные уравнения ax² + bx + c = 0 и bx² + cx + a = 0 (a, b и c – отличные от нуля числа) имеют общий корень.
Найдите его.
На каждой из ста карточек записано по одному числу, отличному от нуля, так, что каждое число равно квадрату суммы всех остальных.
Какие это числа?
|
|
Сложность: 3+ Классы: 10,11
|
Решите систему уравнений: .
|
|
Сложность: 4- Классы: 9,10
|
Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2.
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]