ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

Вниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 181]      



Задача 79365

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

Прислать комментарий     Решение


Задача 109874

Темы:   [ Раскраски ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 9,10,11

Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?

Прислать комментарий     Решение

Задача 111679

Темы:   [ Вспомогательные подобные треугольники ]
[ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 8,9

Пусть a – длина стороны правильного пятиугольника, d – длина его диагонали. Докажите, что  d² = a² + ad.

Прислать комментарий     Решение

Задача 116887

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Задача 67052

Темы:   [ Подобие ]
[ Параллелограммы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .