ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 290]      



Задача 108057

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Перенос стороны, диагонали и т.п. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

В трапеции ABCD (AD – основание) диагональ AC равна сумме оснований, а угол между диагоналями равен 60°.
Докажите, что трапеция равнобедренная.

Прислать комментарий     Решение

Задача 108896

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильный (равносторонний) треугольник ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В остроугольном неравностороннем треугольнике через одну вершину проведена высота, через другую – медиана, через третью биссектриса.
Докажите, что если проведённые линии, пересекаясь, образуют треугольник, то он не может быть равносторонним.

Прислать комментарий     Решение

Задача 108935

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Две касательные, проведенные из одной точки ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом при вершине B провели медиану BM. Вписанная окружность треугольника ABM, касается сторон AB и AM в точках K и L. Известно, что прямые KL и BM параллельны. Найдите угол C.

Прислать комментарий     Решение

Задача 111502

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Все вершины правильного треугольника лежат на сторонах прямоугольного треугольника. Одна из сторон правильного треугольника параллельна гипотенузе и длина её в три раза меньше длины гипотенузы. Найдите углы прямоугольного треугольника.

Прислать комментарий     Решение

Задача 79426

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .