Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 354]
|
|
Сложность: 5- Классы: 10,11
|
В восьми данных точках пространства установлено по прожектору, каждый из
которых может осветить в пространстве октант (трёхгранный угол со
взаимно-перпендикулярными сторонами). Доказать, что можно повернуть прожекторы
так, чтобы они осветили все пространство.
|
|
Сложность: 5- Классы: 9,10,11
|
Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
а) делится на 12!;
б) делится на 13!.
Докажите, что при n ≥ 6 правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.
|
|
Сложность: 5 Классы: 9,10,11
|
В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°.
Докажите, что ∠PQC = 30°.
|
|
Сложность: 5 Классы: 9,10,11
|
На координатной плоскости нарисованы круги радиусом 1/14 с центрами в каждой
точке, у которой обе координаты — целые числа. Докажите, что любая окружность
радиусом 100 пересечёт хотя бы один нарисованный круг.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 354]