ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Квадрат разбит на треугольники (см. рисунок). Сколько существует способов закрасить ровно треть квадрата? Маленькие треугольники нельзя красить частично.

Вниз   Решение


30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение?

ВверхВниз   Решение


Ребро PA пирамиды PABC перпендикулярно плоскости основания ABC и равно 1. В треугольнике ABC угол при вершине A прямой, а каждый из катетов AB и AC равен 2. Точки M и N – середины AC и BC соответственно. Найдите радиус сферы, вписанной в пирамиду PMNC .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 87090

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 8,9

Ребро PA пирамиды PABC перпендикулярно плоскости основания ABC и равно 1. В треугольнике ABC угол при вершине A прямой, а каждый из катетов AB и AC равен 2. Точки M и N – середины AC и BC соответственно. Найдите радиус сферы, вписанной в пирамиду PMNC .
Прислать комментарий     Решение


Задача 87091

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 8,9

Высота PO правильной четырёхугольной пирамиды PABCD равна 4, а стороны основания ABCD равны 6. Точки M и N – середины отрезков BC и CD . Найдите радиус сферы, вписанной в пирамиду PMNC .
Прислать комментарий     Решение


Задача 109319

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Биссекторная плоскость и ГМТ ]
Сложность: 3
Классы: 10,11

Докажите, что в любую треугольную пирамиду можно вписать единственную сферу.
Прислать комментарий     Решение


Задача 64360

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Элементы пирамиды (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

Прислать комментарий     Решение

Задача 66319

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 10,11

Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .