ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны основания прямоугольного параллелепипеда равны a и b . Диагональ параллелепипеда наклонена к плоскости основания под углом 60o . Найдите боковую поверхность параллелепипеда.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 302]      



Задача 87265

Темы:   [ Прямоугольные параллелепипеды ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Стороны основания прямоугольного параллелепипеда равны a и b . Диагональ параллелепипеда наклонена к плоскости основания под углом 60o . Найдите боковую поверхность параллелепипеда.
Прислать комментарий     Решение


Задача 87267

Темы:   [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 8,9

Найдите объём прямоугольного параллелепипеда, если его диагональ равна d , а ребра, исходящие из одной вершины относятся как m:n:p .
Прислать комментарий     Решение


Задача 87276

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

На диагоналях AB1 и BC1 граней параллелепипеда ABCDA1B1C1D1 взяты точки M и N , причём отрезки MN и A1C параллельны. Найдите отношение этих отрезков.
Прислать комментарий     Решение


Задача 87288

Темы:   [ Куб ]
[ Сферы (прочее) ]
Сложность: 3
Классы: 8,9

В полушар радиуса R вписан куб так, что четыре его вершины лежат на основании полушара, а другие четыре вершины расположены на его сферической поверхности. Найдите объём куба.
Прислать комментарий     Решение


Задача 87353

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра DD1 . Найдите расстояние от середины ребра CD до плоскости P , если ребро куба равно 4.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .